iA数学 学習指導案「検定を用いた授業実践」

- 1 日 時 令和●年●月●日(●曜日)第●限 (●年●組教室で実施)
- 2 学 級 ●年●組
- 3 使用教材 数学B(数研出版) 4ステップ数学Ⅱ+B(数研出版)ワークシートNo1・2、タブレットPC、Teams、
- 4 単 元 第2章 統計的な推測
- 5 本時の目標 与えられたデータ (e-Stat を活用) から、仮説をたて、それを検定する。 (カイ2乗検定、Q検定、統計的仮説検定、箱ひげ図での外れ値検定)
- 6 前時の展開 データを与えて、仮説の案を考える。

7 本時の展開

	学習内容	学習活動	指導上の留意点・評価
	○前時の確認		
導入 5 分	○本時の確認	○本時の内容を確認する。	○本時の目的は「与えられたデータから、仮説をたて、それを検定する」ことである。
展開①5分	○検定の手順を確認(5)	○指導者により添削された手順 を確認する。	○検定可能な手順になっているかをチェックする。○手順が全く書けていない人には添削の際に案を示しておく。
展開20分	○個人で仮説を検定(6)	○手順を元に仮説に必要な計算等を行う。○必要に応じてタブレットを用いる。	○検定の結果をグループで共有するので、説明しやすい形にまとめる。表や図など。

	○グループの確認	○4人1組のグループになって	○欠席者が複数いる場合は2人グ
展		机を寄せる。	ループができないようにする。
開			
2	○グループで検定の結果を共有	○各自の仮説とその検定結果を	○検定手順の改善点や結果につい
15		共有する。	て議論する。
分			
	○本時の振り返り		
まとめ			
5 分			

8 補 足

カイ2乗検定、Q検定は探究AKCにて事前に学習済みだが、実際に使用した経験はない。箱ひげ図を用いた外れ値の検定は前時の授業で提示のみした。統計的仮説検定は、二学期期末考査の範囲で参考書等の問題を解いたことはあるが、自ら条件を設定して使用した経験はない。

e-Stat とは、政府統計の総合窓口で、各府省等が公表する統計データを一つにまとめ、統計データを検索したり、地図上に表示できるなど、統計を利用する上で、たくさんの便利な機能を備えた政府統計のポータルサイトのことである。前時では、そのポータルサイト内にある統計データのグラフ描画ソフトを用いた。

9 本時の評価規準

学習の目標	評価方法	課題発見力・仮説設定能力		
		ミニマムサクセス	フルサクセス	エクストラサクセス
与えられたデータ	ワークシート	仮説の案や手順を提示	自分で仮説をたてて、	自分で仮説をたて
から、特徴や傾向	の提出により	された上で、仮説を設	検定する手順ができ	て、検定することが
を分析する。	評価する。	定して検定する手順が	た。	できた。
		できた。		

iA 数学ワークシート	【検定にチャレンジ	No 1
		1 110.1

l) 紙媒体のデータ(本ワークシートの裏面)から,どんな傾向や特徴が読み取れるだろうか。	(3) 検定可能な仮説を立ててみよう。また,その仮説はどの方法で検定できるだろうか。仮説の後ろにかっこ書き
たくさん書き出してみよう。	で記入しよう。例:仮説検定・カイ2乗検定・Q検定・箱ひげ図を用いた外れ値の検定など
	<u>仮説</u>
	仮説
	<u>仮説</u>
	<u>仮説</u>
	<u>仮説</u>
2) E-Stat を用いて, (1)の傾向や特徴をグラフにしてみよう。	(4) グループで(3)の仮説を共有しよう。
また、新たに気付いたものがあれば、書き出してみよう。	
	<u>仮説</u>

iA 数学 ワークシート【検定してみよう】 仮説の案

【仮説1】

塩分摂取量 2000g を超えると、がん死亡率は高くなるのか

(※1日平均摂取量の目安が5~6g なので)

	死亡率大	死亡率小
塩 2000g 大		
塩 2000g 小		

【検定手順】カイ2乗検定

- ・がん死亡率の全国平均を求める
- ・がん死亡率の全国平均に対する大小と、塩分摂取量 2000g に対する大小で表にあてはまる 47 都道 府県の数を求める
- ・エクセルのソートやピポットテーブルを用いるか、エクセルが苦手な人は力技で直接数える
- ・AKC で配布されたプリントを参考に、カイ2乗検定の計算をする

【仮説2】

都道府県別で平均寿命の高い県は、全国平均と比べて有意な差があるのか

(※男性1位は滋賀県)

【検定手順】有意水準5%片側検定

- ・全国の平均寿命を求める
- ・都道府県別の平均寿命の標準偏差を求める 例:=STDEV.S(データ範囲)
- ・ $Z = \frac{X-m}{\sigma}$ へ代入して、棄却域 $Z \ge 1.64$ に入っているか調べる

【仮説3】

沖縄のがん死亡率の低さは異常ではないか

【検定手順】箱ひげ図を用いた外れ値検定

- ・都道府県別のがん死亡率に対して、最大・最小値、第一・第二・第三四分位数をエクセルの関数で 求める 例:=QUARTILE.INC(D4:D50,0)
- ・前時に配布されたプリントを参考に検定する

注意

・「標準偏差」は母集団(全国)の標準偏差が与えられないから、教科書のようには計算できない